品牌:建华 | 型号:SNBY5/1.6双向润滑油泵 | 材质:铸铁 |
原理:转子泵 | 用途:润滑泵.输油泵 | 性能:自动 |
驱动方式:电动 | 泵轴位置:边立式 | 叶轮数目:单级 |
流量:5(m3/h) | 转速:1450 | 排出压力:2.5(Mpa) |
效率:95(%) | 必需汽蚀余量:1(m) | 适用范围:适用范围于正反向旋转需要的供油润滑系统,本泵另一个特点可作为动力油泵在压力低于1.6MPa小流量液压 |
规格:SNBY5/1.6双向润滑泵 |
运费说明:小件产品发快递,大件发物流,本店所标运费为江、浙、沪地区运费,其他省份运费各有不同,拍之前请您先联系客服,谢谢合作!
四、技术参数
型号 | 排量 ml/r | 转速 r/min | 压力 MPa | 吸油高度 m |
SNBY0.8/1.6 | 0.8 | 1500 | 1.6 | 1 |
SNBY2.5/1.6 | 2.5 | 1.2 | ||
SNBY5/1.6 | 5 | 1.2 | ||
SNBY16/1.6 | 16 | 1.2 | ||
SNBY25/1.6 | 25 | 1.2 |
五、技术规格
型号 | C | C1 | C2 | C3 | Φ | Φ1(f8) | Φ2(h7) | b1 | b2 | Φ3 | Φ4 | Z |
SNBY0.8/1.6 | 72 | 20 | 20 | 10 | Φ65 | Φ36 | Φ8 | 5 | Φ7 | Φ53 | ZG1/4" | |
SNBY2.5/1.6 | 80 | 16 | 19 | 12 | Φ73 | Φ36 | Φ8 | 5 | Φ7 | Φ55 | M14×1.5 | |
SNBY2.5/1.6 | 80 | 16 | 19 | Φ73 | Φ36 | Φ12 | 4 | Φ7 | Φ55 | M14×1.5 | ||
SNBY5/1.6 | 93 | 5 | 25 | 12 | Φ90 | Φ35 | Φ12 | 4 | Φ9 | Φ72 | Z3/8" | |
SNBY16/1.6 | 105 | 5 | 25 | 12 | Φ120 | Φ35 | Φ16 | 5 | Φ9 | Φ100 | Z3/4" | |
SNBY25/1.6 | 121 | 5 | 30 | 21 | Φ120 | Φ50 | Φ16 | 5 | Φ9 | Φ100 | Z3/4" |
在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。
实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。
对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。如果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将保持恒定的流量,直至达到装置中最弱的部件的机械极限(通常装有一个扭矩限制器)。
对于一台泵的转速,实际上是有限制的,这主要取决于工艺流体,如果传送的是油类,泵则能以很高的速度转动,但当流体是一种高粘度的聚合物熔体时,这种限制就会大幅度降低。
推动高粘流体进入吸入口一侧的两齿空间是非常重要的,如果这一空间没有填充满,则泵就不能排出准确的流量,所以PV值(压力×流速)也是另外一个限制因素,而且是一个工艺变量。由于这些限制,齿轮泵制造商将提供一系列产品,即不同的规格及排量(每转一周所排出的量)。这些泵将与具体的应用工艺相配合,以使系统能力及价格达到最优。
PEP-II泵的齿轮与轴共为一体,采用通体淬硬工艺,可获得更长的工作寿命。“D”型轴承结合了强制润滑机理,使聚合物经轴承表面,并返回到泵的进口侧,以确保旋转轴的有效润滑。这一特性减少了聚合物滞留并降解的可能性。精密加工的泵体可使“D”型轴承与齿轮轴精确配合,确保齿轮轴不偏心,以防齿轮磨损。Parkool密封结构与聚四氟唇型密封共同构成水冷密封。这种密封实际上并不接触轴的表面,它的密封原理是将聚合物冷却到半熔融状态而形成自密封。也可以采用Rheoseal密封,它在轴封内表上加工有反向螺旋槽,可使聚合物被反压回到进口。为便于安装,制造商设计了一个环形螺栓安装面,以使与其它设备的法兰安装相配合,这使得筒形法兰的制造更容易。
PEP-II齿轮泵带有与泵的规格相匹配的加热元件,可供用户选配,这可保证快速加温和热量控制。与泵体内加热方式不同,这些元件的损坏只限于一个板子上,与整个泵无关。
泰兴市建华液压件厂座落于美丽的银杏之乡——泰兴市。其主要产品有CB-B系列齿轮油泵、HY01系列润滑泵、R12-1润滑泵、DCB-B系列低噪音大流量齿轮泵、CB-FC(FA)型高压油泵,SNBY减速机专用润滑泵以及特殊规格的油泵、 齿轮油泵电机组.液压站等。 本厂生产装备精良,检测设备齐全,质量稳定,产品畅销全国各地,部分产品随主机配套厂出口国外。“精益求精,服务满意”是宇力液压的企业宗旨。公司网址:http://www.txjhyy.com
齿轮采用具有国际九十年人先进水平的新技术--双圆弧正弦曲线齿型圆弧。它与渐开线齿轮相比,最突出的优点是齿轮啮合过程中齿廓面没有相对滑动,所以齿面无磨损、运转平衡、无困液现象,噪声低、寿命长、效率高。该泵摆脱传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。 泵设有差压式安全阀作为超载保护,安全阀全回流压力为泵额定排出压力1.5倍。也可在允许排出压力范围内根据实际需要另行调整。但是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。 该泵轴端密封设计为两种形式,一种是机械密封,另一种是填料密封,可根据具体使用情况和用户要求确定。
困油现象及卸荷
1困油现象的危害: 2消除困油现象: 3齿轮泵的泄漏及补偿措施 4提高外啮合齿轮泵压力的措施 5、径向不平衡力 1危害︰径向不平衡力很大时能使轴弯曲,齿顶与壳体接触,同时加速轴承的磨损,降低轴承的寿命。 2措施︰为了减小径向不平衡力的影响,通常采取减小压油口的办法。减少齿轮的齿数,这样减小了齿顶圆直径,承压面积减小。适当增大径向间隙。 6、内啮合齿轮泵
齿轮泵性能提高的方法
提高齿轮油泵性能的可行回路 齿轮油泵因受定排量的结构限制,通常认为齿轮泵仅能作恒流量液压源使用。然而,附件及螺纹联接组合阀方案对于提高其功能、降低系统成本及提高系统可靠性是有效的,因而,齿轮油泵的性能可接近价昂、复杂的柱塞泵。 在泵上直接安装控制阀,可省去泵与方向阀之间管路,从而控制了成本。较少管件及连接件可减少泄漏,从而提高工作可靠性。而且泵本身安装阀可降低回路的循环压力,提高其工作性能。下面是一些可提高齿轮泵基本功能的回路,其中有些是实践证明可行的基本回路,而有些则属创新研究。 卸载回路 卸载元件将在大流量泵与小功率单泵结合起来。液体从两个齿轮油泵因受定排量的结构限制,通常认为齿轮泵仅能作恒流量液压源使用。然而,附件及螺纹联接组合阀方案对于提高其功能、降低系统成本及提高系统可靠性是有效的,因而,齿轮油泵因受定排量的结构限制,通常认为齿轮油泵仅能作恒流量液压源使用。然而,附件及螺纹联接组合阀方案对于提高其功能、降低系统成本及提高系统可靠性是有效的,因而,齿轮油泵的性能可接近价昂、复杂的柱塞泵。的性能可接近价昂、复杂的柱塞泵。的出口排出,直至达到预定压力和(或)流量。这时,大流量泵便把流量从其出口循环到入口,从而减少了该泵对系统的输出流量,即将泵的功率减少至略高于高压部分工作的所需值。流量降低的百分比取决于此时未卸载排量占总排量的比率。组合或螺纹联接卸载阀减少乃至消除了管路、孔道和辅件及其它可能的泄漏。 最简单的卸载元件由人工操纵。弹簧使卸载阀接通或关闭,当给阀一操纵信号时,阀的通断状态好被切换。杠杆或其它机械机构是操纵这种阀的最简单方法。 导控(气动或液压)卸载阀是操纵方式的一种改进,因为此类阀可进行远程控制。其最大的进展是采用电气或电子开关控制的电磁阀,它不仅可用远程控制,而且可用微机自动控制,通常认为这种简单的卸载技术是应用的最佳情况。 人工操纵卸载元件常用于为快速动作而需大流量及快速动作而需大流量及为精确控制而减少流量的回路,例如快速伸缩的起重臂回路。图1所示回路的卸载阀无操纵信号作用时,回路一直输出大流量。对于常开阀,在常态下回路将输出小流量。 压力传感卸载阀是最普遍的方案。如图2所示,弹簧作用使卸载阀处于其大流量位置。回路压力达到溢流阀预调值时,溢流阀开启,卸载阀在液压和作用下切换至其小流量位置。压力传感卸载回路多用于行程中需快速、行程结束时需高压低速的液压缸供液。压力传感卸载阀基基本上是一个达到系统压力即卸的自动卸载元件,普遍用于测程仪分裂器和液压虎钳中。 流量传感卸载回路中的卸载阀也是由弹簧将其压向大流量位置。该阀中的固定节流孔尺寸按设备的发动机最佳速度所需流量确定。若发动机速度超出此最佳范围,则节流小孔压降将增加,从而将卸载阀移位至小流量位置。因此大流量泵相邻的元件做成可对最大流量节流的尺寸,故此回路能耗少、工作平稳且成本低。这种回路的典型应用是,限定回路流量达最佳范围以提高整个系统的性能,或限定机器高速行驶期间的回路压力。常用于垃圾运载卡车等。 压力流量传感卸载回路的卸载阀也是由弹簧压向大流量位置,无论达到预定压力还是流量,都会卸载。设备在空转或正常工作速度下均可完成高压工作。此特性减少了不必要的流量,故降低了所需的功率。因为此种回路具有较宽的负载和速度变化范围,故常用于挖掘设备。 图5为具有功率综合的压力传感卸载回路,它由两组略加变化的压力传感卸载泵组成,两组泵由同一原动机驱动,每台泵接受另一卸载泵的导控卸载信号。此种传感方式称之为交互传感,它可使一组泵在高压下工作而另一组泵在大流量下工作。两只溢流阀可按每个回路特殊的压力调整,以使一台或两台泵卸载。此方案减少了功率需求,故可采用小容量价廉原动机。 图6所示为负载传感卸载回路。当主控阀的控制腔(下腔)无负载传感信号时,泵的所有流量经阀1、阀2排回油箱;当给此控制阀施加负载传感信号时,泵向回路供液;当泵的输出压力超过负载传感阀的压力预定值时,泵仅向回路提供工作流量,而多余流量经阀2的节流位置旁通回油箱。 带负载传感元件的齿轮油泵与柱塞泵相比,具有成本低、抗污染能力强及维护要求低的优点。 优先流量控制 不论齿轮油泵的转速、工作压力或支路需要的流量大小,定值一次流量控制阀总可保证设备工作所需的流量。在图7所示的这种回路中,泵的输出流量必须大于或等于一次油路所需流量,二次流量可作它用或回油箱。定值一次流量阀(比例阀)将一次控制与液压泵结合起来,省去管路并消除外泄漏,故降低了成本。此种齿轮泵回路的典型应用是汽车起重机上常可见到的转向机构,它省去了一个泵。 负载传感流量控制阀的功能与定值一次流量控制的功能十分相近:即无论泵的转速、工作压力或支路抽需流量大小,均提供一次流量。但仅通过一次油口向一次油路提供所需流量,直至其最大调整值。此回路可替代标准的一次流量控制回路而获得最大输出流量。因无载回路的压力低于定值一次流量控制方案,故回路温升低、无载功耗小。负载传感比列流量控制阀与一次流量控制阀一样,其典型应用是动力转向机构。 旁路流量控制 对于旁路流量控制,不论泵的转速或工作压力高低,泵总按预定最大值向系统供液,多余部分排回油箱或泵的入口。此方案限制进入系统的流量,使其具有最佳性能。其优点是,通过回路规模来控制最大调整流量,降低成本;将泵和阀组合成一体,并通过泵的旁通控制,使回路压力降至最低,从而减少管路及其泄漏。 旁路流量控制阀可与限定工作流量(工作速度)范围的中团式负载传感控制阀一起设计。此种型式的齿轮泵回路,常用于限制液压操纵以使发动机达最佳速度的垃圾运载卡车或动力转向泵回路中,也可用于固定式机械设备。 干式吸油阀 干式吸油阀是一种气控液压阀,它用于泵进油节流,当设备的液压空载时,仅使极小流量(〈 18.9t/min)通过泵;而在有负载时,全流量吸入泵。如图10所示,这种回路可省去泵与原动机间的离合器,从而降低了成本,还减小了空载功耗,因通过回路的极小流量保持了设备的原动机功率。另外,还降低了泵在空载时的噪声。干式吸油阀回路可用于由内燃机驱动的任何车辆中开关式液压系统,例如垃圾装填卡车及工业设备。 液压泵方案的选择 目前,齿轮油泵的工作压力已接近柱塞泵,组合负载传感方案为齿轮泵提供了变量的可能性,这就意味着齿轮泵与柱塞泵之间原本清楚的界限变理愈来愈模糊了。 合理选择液压泵方案的决定因素之一,是整个系统的成本,与价昂的柱塞泵相比,齿轮泵以其成本较低、回路简单、过滤要求低等特点,成为许多应用场合切实可行的选择方案。
齿轮泵马达的技术特点
G5、GPC4系列齿轮泵、GM5、GMC4系列齿轮马达引进美国威格士(VKS),技术突出特点: 1.结构紧凑、体积小、重量轻 由铝合金制造前盖、中间体、后盖,合金钢制造的齿轮和铝合金制造的压力板等零部件组成,前、后盖内各压装两个DU轴承,DU材料是齿轮泵的理想轴承材料,可大大提高齿轮泵的寿命。 2.工作可靠 压力板是径向和轴向压力补偿的主要元件,可以减轻轴承载荷和自动调节齿轮泵轴向间隙,从而有效地提高了齿轮泵的性能指标和工作可靠性;GM5、GPC4系列齿轮马达可以提供单旋向不带前轴承,双旋向不带前轴承和单旋向带前轴承,双旋向带前轴承四种结构型式,其中带前轴承的齿轮马达可以承受径向力和轴向力。 3.转速高,压力大 转速高3000~4000转/每分,理论扭矩为17N.m(牛顿.米)~64N.m,可达20-25MPa。 4.连接方式适用于进口机械和工程机械 符合SAE和国家标准GB安装法兰、轴伸、进油口及出油口连接行式。广泛适用于汽车、拖拉机、工程机械、农业机械以及其他机械液压系统中。
齿轮泵输出流量不够原因及排除方法
1、产生原因 ① 内外转子的齿侧间隙太大,使吸压油腔互通.容积效率显著降低,输出流量不够; ② 轴向间隙大大; ③ 吸油管路中的结合面处密封不严等原因,使泵吸进空气,有效吸入流量减少; ④ 吸油不畅.如因油液粘度过大,滤油器被污物堵塞等导致吸入流量减少; ⑤ 溢流阀卡死在半开度位置,泵来的流量一部分通过溢流阀返回油箱,而使得进入系统的流量不够.此时伴随出现系统压力上不去的故障。 2、排除方法 ① 更换内外转子,使齿侧隙在规定的范围内(一般小于0.07mm); ② 研磨泵体两端面,保证内外转子装配后轴向间隙在0.02~0.05mm 范围内; ③ 更换破损的吸油管密封,用聚四氟乙烯带包扎好管接头螺纹部分再拧紧管接头; ④ 选用合适粘度的油液,清洗进油滤油器使吸油畅通。并酌情加大吸油管径; ⑤ 修理溢流阀,排除溢流阀部分短接油箱造成泵有效流量减少的现象。