多级离心泵的工作原理是把电动机高速旋转的机械能转化为被提升液体的动能和势能,是一个能量传递和转化的过程。根据这一特点可知,多级离心泵的工况点是建立在水泵和管道系统能量供求关系的平衡上的,只要两者之一的情况发生变化,其工况点就会转移。工况点的改变由两方面引起:一.管道系统特性曲线改变,如阀门节流;二.水泵本身的特性曲线改变,如变频调速、切削叶轮。
下面就这几种方式进行分析和比较:
1)阀门节流
改变离心泵流量最简单的方法就是调节泵出口阀门的开度,而水泵转速保持不变(一般为额定转速),其实质是改变管路特性曲线的位置来改变泵的工况点。关小阀门时,管道局部阻力增加,水泵工况点向左移,相应流量减少。阀门全关时,相当于阻力无限大,流量为零,此时管路特性曲线与纵坐标重合。当关小阀门来控制流量时,水泵本身的供水能力不变,扬程特性不变,管阻特性将随阀门开度的改变而改变。这种方法操作简便、流量连续,可以在某一最大流量与零之间随意调节,且无需额外投资,适用场合很广。但节流调节是以消耗多级离心泵的多余能量, 来维持一定的供给量,多级离心泵的效率也将随之下降,经济上不太合理。
阀门调节
2)变频调速
工况点偏离高效区是水泵需要调速的基本条件。当水泵的转速改变时,阀门开度保持不变(通常为最大开度),管路系统特性不变,而供水能力和扬程特性随之改变。
在所需流量小于额定流量的情况下,变频调速时的扬程比阀门节流小,所以变频调速所需的供水功率也比阀门节流小。很显然,与阀门节流相比,变频调速的节能效果很突出,多级离心泵的工作效率更高。另外,采用变频调速后,不仅有利于降低多级离心泵发生汽蚀的可能性,而且还可以通过对升速/降速时间的预置来延长开机/停机过程,使动态转矩大为减小,从而在很大程度上消除了极具破坏性的水锤效应,大大延长了水泵和管道系统的寿命。
事实上,变频调速也有局限性,除了投资较大、维护成本较高外,当水泵变速过大时会造成效率下降,超出泵比例定律范围,不可能无限制调速。
3)切削叶轮
当转速一定时,泵的压头、流量均和叶轮直径有关。对同一型号的泵,可采用切削法改变泵的特性曲线。
切削定律是建立在大量感性试验资料基础上的,它认为如果叶轮的切削量控制在一定限度内(此切削限量与水泵的比转数有关),则切削前后水泵相应的效率可视为不变。切削叶轮是改变水泵性能的一种简便易行的办法,即所谓变径调节,它在一定程度上解决了水泵类型、规格的有限性与供水对象要求的多样性之间的矛盾,扩大了多级泵的使用范围。当然,切削叶轮属不可逆过程,用户必须经过精确计算并衡量经济合理性后方可实施。
、